2002-009 – Plasma Torch Production of Metal Particles of Controlled Size

Background The standard technology for producing aluminum particles in the 1-10 micron size diameter range, which may be optimal for metallic paints, involves converting larger metallic particles into smaller ones by wet the ball milling of the larger particles. Wet ball milling is an inefficient method of providing particles in this size range because only about 20% of the particles produced by wet ball milling are less than 10 microns and this minor fraction must be physically separated from the rest of the wet-ball milled product. A more efficient method for producing metallic particles in the optimal size range remains desirable. Therefore, an object of the present invention is to provide an efficient method for producing high purity metallic particles of an optimal size range. Technology Description Method for producing metallic particles. The method converts metallic nanoparticles into larger, spherical metallic particles. An aerosol of solid metallic nanoparticles and a non-oxidizing plasma having a portion sufficiently hot to melt the nanoparticles are generated. The aerosol is directed into the plasma where the metallic nanoparticles melt, collide, join, and spheroidize. The molten spherical metallic particles are directed away from the plasma and enter the afterglow where they cool and solidify. Andrew Roerick aroerick@innovations.unm.edu 505-277-0608

Related Blog

Smart, interactive desk

Get ready to take your space management game to the next level with the University of Glasgow’s innovative project! By combining the

Mechanical Hamstring™

University of Delaware Technology Overview This device was created to allow athletes who suffer a hamstring strain to return to the field

Join Our Newsletter

                                                   Receive Innovation Updates, New Listing Highlights And More