Electronically Activated C-MEMS Electrodes for On-chip Micro Super-Capacitors – IP 1011

Florida International University (FIU) is pursuing business partners interested in commercializing Electronically Activated C-MEMS Electrodes for On-chip Micro Super-capacitors as a very promising method for fabricating electrochemical micro-capacitors. Carbon micro-electrode arrays for use in micro-capacitors are fabricated using the carbon microelectromechanical system (C-MEMS) technique. This technique employs electrochemical activation in order to improve the capacitive behavior of carbon micro-electrode arrays. Cyclic voltammetry (CV) and galvanostatic charge-discharge results indicated that electrochemical activation effectively increases the capacitance of micro-electrode arrays by as many as three orders of magnitudes. Specific geometric capacitance reaching as high as 7mFcm-2 at a scan rate of 5mVs-1 has been observed with just 30 minutes of electrochemical activation. In addition after 1000 CV cycles the capacitance loss is less than 13 percent. This indicates that electrochemically activated C-MEMS micro-electrode arrays are promising candidates for on chip electrochemical micro-capacitors. FIU inventors have successfully demonstrated that C-MEMS fabricated micro-electrodes are potentially capable of delivering energy storage solutions for micro-devices. In addition fabrication of higher aspect ratio micro-electrodes could increase the device’s surface area while maintaining a desirable in the limited footprint. Other future developments include fabrication of high aspect ratio 3D electrodes, which would increase adhesion of carbon current collectors to the substrate, and optimizing the conditions of electrochemical activation. Shantanu Balkundi sbalkund@fiu.edu 305-348-8061

Related Blog

Smart, interactive desk

Get ready to take your space management game to the next level with the University of Glasgow’s innovative project! By combining the

Mechanical Hamstring™

University of Delaware Technology Overview This device was created to allow athletes who suffer a hamstring strain to return to the field

Join Our Newsletter

                                                   Receive Innovation Updates, New Listing Highlights And More