Engineers from UC San Diego have developed a seamless, compact and non-intrusive, high-sampling-speed biomedical sensor for health monitoring. The invention encompasses a novel system integration method of multi-modal, ultra-thin and highly integrated electronic sheets that can record from the human skin, process, and transmit electrophysiological data for medical purposes. This electrophysiological sensor with readout circuitry on ultra-thin flexible substrates technology is pin-sized. This is accomplished in a newly developed heterogeneous integration process in the inventors’ laboratories in which multi-functional and multi-layered devices are monolithically integrated onto a single handle substrate, and upon completion of the integrated system, the handle substrate is removed (see related technology 2015-074 .) This unique approach improves upon the conventional devices because it can incorporate and integrate multiple circuit components without the need for wafer/bump bonding of discrete components and the resultant loss of resolution and performance during the bonding process, a typical problem in existing art. Wearable electronics for health monitoring have gained increased interest after conformal tattoo-like electronic sensors were co-integrated on elastomeric sheets. One of the design requirements in such wearable electronics was to carefully adjust the effective Young’s modulus and bending stiffness of the resulting layered electronics, and this has restrained the compact integration of the electronic components because the single transistor elements had dimensions that were in millimeter scale. The promise of tattoo-like epidermal electronics has inspired a significant research effort to optimize the mechanics of these structures.
Smart, interactive desk
Get ready to take your space management game to the next level with the University of Glasgow’s innovative project! By combining the