Strongly Interacting Magnetic Particle Imaging

Nuclear medicine is a diagnostic imaging method that works very well, but it is both expensive and gives off excess radiation. X-rays also are used for diagnostic imaging but have poor contrast. Magnetic Particle Imaging (MPI)is a promising new tracer modality with zero attenuation in tissue, near-ideal contrast and sensitivity, and an excellent safety profile, however, the spatial resolution of MPI is currently the modality’s only weak technical attribute. UC Berkeley and UF researchers have developed a novel, compact, and intuitive MPI scanner that resolves this issue. The research demonstrated proof-of-concept studies for an MPI modality, referred to herein as strongly-interacting magnetic particle imaging (siMPI) that enables a super-resolution breakthrough. The siMPI provided more than a 6-fold improvement in every dimension of space spatial resolution and 37-fold increase in sensitivity. The MPI can be used for early-stage detection of cancer, gut bleeds, strokes, pulmonary embolism, and tracking immunotherapies and MPI can penetrate any tissue, including bone, lungs, and dense breast tissue. Terri Sale terri.sale@berkeley.edu 510-643-4219

Related Blog

Smart, interactive desk

Get ready to take your space management game to the next level with the University of Glasgow’s innovative project! By combining the

Mechanical Hamstring™

University of Delaware Technology Overview This device was created to allow athletes who suffer a hamstring strain to return to the field

Join Our Newsletter

                                                   Receive Innovation Updates, New Listing Highlights And More