Ultra-High Sensitivity RT-PCR for Viral Genome Sequencing (UA16-197)

This technology is a process for genome sequencing of RDA-DNA fragments found in archived or damaged biological samples. The process utilizes large panels of primers to amplify short RNA-DNA fragments into separate and off-set pools. These off-set pools of amplicons are used to reconstruct whole and near-whole genomic sequences in samples otherwise deemed non-useful. This technology has potential application for COVID-19 and other viral or infectious disease screening, clinical diagnostics, and vaccine research.Background: When performing conventional polymerase chain reaction (PCR) testing for genomic sequencing, some poor-quality biological samples are deemed “negative” or unusable. However, this result may be caused by RNA/DNA fragments which are simply too short and fragmented, or too unique, for conventional methods to identify. This material may currently be relegated to non-analysis. The invention presented here enables analysis of samples comprising low concentrations or degraded nucleic acid, samples with sought-after rare mutations, formalin-fixed paraffin-embedded (FFPE), or generally, any poor-quality samples where conventional PCR methods have failed.Learn more at https://bit.ly/UA16-197 Anne Spieth annes@tla.arizona.edu 520-626-1577

Related Blog

Smart, interactive desk

Get ready to take your space management game to the next level with the University of Glasgow’s innovative project! By combining the

Mechanical Hamstring™

University of Delaware Technology Overview This device was created to allow athletes who suffer a hamstring strain to return to the field

Join Our Newsletter

                                                   Receive Innovation Updates, New Listing Highlights And More